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Fig. 12. Additional impact of second-order effects for positive PIAC (underestimated cost).

For the Motorola dataset, we have also seen that the reasons for sensitivity are far
from obvious without the OATSAC sensitivity heat map. The subtlety of sensitivity is a
motivation for the automated decision support approach advocated in this article. The
Motorola dataset is a modest requirements problem, with only 35 different requirement
choices. Though we make no claims about results that may be obtained for other
requirement problems, it was clear that there were several subtleties revealed by
our analysis, even in this relatively modest requirements set. We can therefore have
measured confidence that there will be other interesting sensitivities elsewhere too
and that these may lead to similarly actionable findings.

9. THREATS TO VALIDITY

Threats to internal validity concerns the factors that could have affected the obser-
vations made during the experimental evaluations. Any experimental evaluation of
scalability is not free from environmental issues. The execution time was measured
using Unix time utility. In order to control factors that could perturb our measures, the
experiment was performed only after we ensured that pad peaks and other memory
intensive tasks could be avoided as much as possible. We have repeated the experiment
up to three times depending on the existence of outliers. Threats to external validity
concerns the factors that prevent the generalization of the results. The scalability ob-
served in the experimental evaluation clearly only applies to the specific choice of the
problem definition and the algorithm. The same level of scalability may not be easily
achievable for different classes of problems or exact algorithms. However, the NRP
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Fig. 13. Additional impact of second-order effects for negative PIAC (overestimated cost).

formulation used in the article has been widely studied [Bagnall et al. 2001; van den
Akker et al. 2004, 2005; Zhang et al. 2008]: our experimentally results provide sup-
porting evidence that there exists at least one exact algorithm, which is scalable, for a
well-known formulation of NRP. The results for the Motorola dataset give an indication
that the work can provide insights useful to a decision maker, but they constitute only
existential evidence that this can occur in practice they do not guarantee that in all
cases it will be possible to gain such insights. In this way, the results are case study
based and we cannot generalize from them. It should also be noted that the Motorola
dataset contains only a trivial set of dependencies; where there are more elaborate
dependencies, these will also need to be taken into account, and this will affect the
formulation of the problem.

Threats to construct validity concerns whether the measurement we made repre-
sent the actual problem. Real estimation errors in NRP can involve more than one
requirement at a time, which would require more complicated modeling of the issue.
However, we base our experiment on a widely studied and accepted sensitivity analysis
technique (one-at-a-time) [Saltelli et al. 2000]. In any case, an exhaustive sensitivity
analysis where an arbitrary number of requirements can be perturbed at the same time
involves an exponential number of instances. Unfortunately, any method reducing this
number could leave aside a sensitive instance.

We used 15 different problem sizes ranging from 100 to 1500 requirements with steps
of 100 and correlation factors ranging from 0% to 100% in 5% steps. This resulted in 315
problem configurations, but we cannot claim that these are necessarily representative.
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Of course, further experimentation with alternative settings is always possible, and
we cannot rule out the possibility that such experiments might yield different results.
Though we can be more sure about performance between the values of the settings
we chose, we can say nothing about scalability beyond 1,500 requirements. In many
cases, such a large number of requirements would be sufficient, but should applications
develop that required scalability beyond these numbers, then further experimentation
would be required.

10. RELATED WORK

Bagnall et al. [2001] coined the term ‘Next Release Problem (NRP)’, formulating the
consideration of the requirements for a software release as a search-based selection
problem. However, there had been previous work on the application of optimization
techniques for requirements prioritization [Karlsson et al. 1998]. The problem is also
known as Software Release Planning [Ruhe and Greer 2003; Greer and Ruhe 2004].
There has been a recent overview of the area [Zhang et al. 2008] as well as a detailed
survey of Search-Based Software Engineering (SBSE) techniques, which includes a
section on the NRP [Harman et al. 2012b]. The work by Bagnall et al. [2001] is one of
the few papers to consider an exact algorithm for the NRP. They use a standard integer
programming formulation and present results from its implementation in the popular
tool CPLEX [Bixby et al. 2000]. However, they do not present any results regarding the
scalability of their approach.

While CPLEX is a widely used and robust tool, van den Akker et al. [2004, 2005]
add various ‘managerial steering inputs’ to a basic ILP formulation of the NRP to
provide greater flexibility. Li et al. [2007] present two integer linear programming
models. The first of these is concerned with project management, seeking to reduce
project completion time. This is a separate problem from the requirements analysis
problem and one that has been widely studied elsewhere in the literature on SBSE
for project management [Alba and Chicano 2007; Alvarez-Valdés et al. 2006; Antoniol
et al. 2004, 2005; Chao et al. 1993; Kapur et al. 2008]. The second model integrates
‘on time delivery’ with maximal revenue generation. The article reports the results of
experiments with both approaches on synthetic data.

No exact algorithm has been used in the literature on the NRP for which real-world
problems were used in its evaluation. Indeed, most of the previous work on both real
and synthetic data has concerned meta-heuristic algorithms which, though flexible
and popular, are inexact and therefore cannot be used for a fully reliable sensitivity
analysis.

Our approach to RSA uses Nemhauser–Ullmann’s (NU) algorithm to solve multi-
ple instances of the NRP. NU can be regarded as a smart rendition of dynamic pro-
gramming by costs. This algorithm first appeared in the solution of capital allocation
problems [Nemhauser and Ullmann 1969]. Many researchers had noticed that the al-
gorithm seemed to behave well in practice when solving random KP instances, but a
theoretical justification of these observations was lacking until groundbreaking work
by Beier and Vöcking [2004] provided an explanation of the behavior of this algorithm
in the average case under quite general conditions.

Karlsson et al. [1998] uses the Analytical Hierarchy Process (AHP) which allows for
human contributions to the choice of ranking. This approach has been implemented
in the Focal Point requirements analysis tool, which is now marketed by Telelogic,
a subsidiary of IBM. Feather and Menzies [2002] used simulated annealing to solve
requirements selection and optimization for a NASA project. Ruhe et al. [Greer and
Ruhe 2004; Ruhe and Greer 2003; Ruhe and Ngo-The 2004] used a genetic algorithm
to select requirements and represented results of the application of this approach to
a real-world dataset. Ngo-The and Ruhe [2009] combine integer linear programming
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with a genetic algorithm to overcome the weaknesses of genetic algorithms with a two-
phase approach. Baker et al. [2006] also consider requirements problems as a selection
problem, presenting results for simulated annealing and greedy algorithms on the
Motorola dataset used in the present paper. AlBourae et al. [2006] also use both greedy
and AHP algorithms in a release re-planning approach. Jalali et al. [2008] use a greedy
algorithm to address the problem of risk reduction, where risks are characterized in
terms of the risk of introducing new requirements.

Thus, previous work demonstrates the value of applying optimization techniques to
the problem of requirements analysis. Recent work has shown that the results obtained
by these approaches are superior to those assessments that can be made by a human in
their optimization of choices [de Souza et al. 2010]. These “human-competitive” findings
provide further evidence for the importance of optimization in requirements analysis.

However, when it comes to the problem of sensitivity, the inherent stochastic nature
of all of the algorithms used means that they are inherently unreliable; we shall not
know whether fluctuations are due to sensitivity or to the algorithms natural stochastic
properties. The primary difference in the approach adopted in the present article lies in
its use of a scalable exact algorithm for the NRP and its use as a “precise instrument”
with which to address the sensitivity of a solution to the potential imprecision in the
estimates upon which it is based.

This article concerns a single objective formulation of the NRP in which the problem
is to find a set of requirements that maximize revenue while falling within budget.
However, the underlying algorithm used for exact NRP solutions could be used to solve
the bi-objective NRP problem. This may lead to extensions of the work in this article to
consider multi-objective formulations of the NRP.

Zhang et al. [2007] introduced a multi-objective formulation in terms of a cost-benefit
trade-off. In this approach the budget is not fixed. Instead, budget minimization be-
comes an additional objective. Saliu and Ruhe [2007a] also introduced a multi-objective
formulation in which the balance was between concerns at two levels of abstraction:
implementation and requirement, rather than between cost and value. Finkelstein
et al. [2008a] used a multiple objective approach to analyze fairness in requirements.
In this approach, the objective is to minimize cost while simultaneously maximizing
fairness according to several different formulations of fairness; each of the different
notions of fairness corresponds to an objective. Feather et al. [2004, 2006] also used
a form of multi-objective visualization of the results from their simulated annealing
approach, in which results are presented on a Pareto front.

In this article, we use a sensitivity analysis approach. Sensitivity analysis (SA) is
found in other areas of engineer but is not widely used, hitherto, in requirements engi-
neering. Other applications of SA are widely found in the literature for various areas,
such as chemical kinetics [Sandu et al. 2003], physical science [Newman et al. 1999],
environmental modeling [Hamby 1994], telecommunications engineering [Racu et al.
2005], and financial analysis [Levine and Renelt 1992]. In software engineering, the
application of sensitivity analysis has been mostly focused on the area of software reli-
ability and prediction models [Rodrigues et al. 2005; Wagner 2007a, 2007b; Zhu et al.
2005]. Harman et al. presented a search-based sensitivity analysis of NRP [2009]. How-
ever, precise sensitivity analysis requires exact algorithms in order to avoid unwanted
and potentially ruinous ‘noise’ from the approximate nature of the algorithm.

11. IMPLICATIONS OF THE RESULTS FOR WORK ON NRP

The results in this article have implications for subsequent work on the NRP and
release planning. Most previous work has been concerned with giving insight to decision
makers about possible choices of requirement. For these applications, the inherent
imprecision of metaheuristic methods may not be an issue.
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In some circumstances, such as the exploration of trade-offs between different objec-
tives in multiobjective formulations [Finkelstein et al. 2008b; Saliu and Ruhe 2007b],
it may be sufficient to use inexact algorithms, which may offer other benefits (such as
handling messy, incomplete data) or where these formations have no known precise
solution approach that can be computed in reasonable time.

However, for the application of optimization-based approaches to problems concern-
ing the RSA, it is important to have an algorithm that guarantees globally optimal
solutions at the heart of the approach; to assess the impact of estimate inaccuracies,
we need an accurate approach. Without an optimal algorithm, it will not be clear
whether sensitivity observed in solutions obtained is due to PIACs or whether it arises
due to the inherent stochastic nature of the algorithm used. In particular, that the
previous work on sensitivity analysis using a genetic algorithm [Harman et al. 2009],
suffers from this problem.

This does not mean that metaheuristic approach cannot be used for any aspect
of RSA. As we discuss in the future work for this research agenda, for higher-order
effects (interactions between estimate inaccuracies), it may prove essential to use a
metaheuristic approaches to cater for the scale of the space of possible interactions.
However, in such a scenario, it may be unrealistic to expect that a complete character-
ization of all estimate inaccuracy risks can be captured.

12. FUTURE WORK

Future work will consider different formulations of the requirements problem, includ-
ing those with complex dependencies between requirements, for example, where the
value and cost of one requirement are affected by the other requirements also included
in the release of the software.

Handling higher-order effects for orders n, (n > 2) remains an interesting open prob-
lem for future work. In this article, we showed how a one-at-a-time analysis (OAT)
could be used to handle all possible single estimate inaccuracies and how this could
be extended to all second-order interaction effects between estimate inaccuracies. Ap-
proaches to higher orders of interactions require very different approaches, since they
will not be so easy to visualize and the computational complexity grows exponentially
with the interaction order. One interesting avenue for future work will consist of using
SBSE to search the space of higher-order interactions to locate potential problematic
cases.

Other requirements selection algorithms, such as OPTIMIZERASORP [Ngo-The and
Ruhe 2009], could also be considered in future work to determine whether or not they
could form a suitably precise foundation on which to build sensitivity analyses.

13. CONCLUSIONS

There has been a lot of recent interest in the application of search-based software
engineering (SBSE) to requirements analysis optimization. One important goal of this
work has been to find algorithms that are able to select an ideal set of requirements for
the next release of the system, an activity known as release planning for an optimization
problem known as the Next Release Problem (NRP). Recent work has demonstrated
human competitive results for this area of SBSE. However, there remains a problem:
the optimization can only ever be as good as the quality of the estimates upon which it is
based. Software engineering estimation inaccuracy is widely believed to be significant,
making this an important problem.

In this article, we introduce a one-at-a-time (OAT) sensitivity analysis, incorporating
a scalable exact optimization algorithm as the NRP Solver at the heart of the analy-
sis. We demonstrated that this exact algorithm can be used to precisely assess the
sensitivity of an instance of the NRP to inaccuracies in its estimate. This allows the
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requirements engineer to locate relatively risk-free ‘insensitive’ budget choices and
to identify those ‘sensitive’ requirements for which estimates are particularly impor-
tant. Scalability is clearly important, but it is difficult, because the NRP is NP-hard.
We presented results from an experimental study that demonstrate the scalability of
our approach, together with a real-world case study that illustrates the way in which
our approach can assist a requirements engineer. We also illustrate that analysis of
higher-order estimate inaccuracy is feasible using an exact algorithm.

Armed with a reliable assessment of sensitivity, the requirements analyst can better
account for the impact of estimate inaccuracies, thereby making better informed choices
in the crucial early stages of the software development process. The case study scenarios
in this article show how our analysis can reveal particularly sensitive budget levels and
requirements that might otherwise have gone unnoticed by the requirements decision
maker.
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