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The nature of the requirements analysis problem, based as it is on uncertain and often inaccurate estimates
of costs and effort, makes sensitivity analysis important. Sensitivity analysis allows the decision maker to
identify those requirements and budgets that are particularly sensitive to misestimation. However, finding
scalable sensitivity analysis techniques is not easy because the underlying optimization problem is NP-hard.
This article introduces an approach to sensitivity analysis based on exact optimization. We implemented this
approach as a tool, OATSAC, which allowed us to experimentally evaluate the scalability and applicability of
Requirements Sensitivity Analysis (RSA). Our results show that OATSAC scales sufficiently well for practical
applications in Requirements Sensitivity Analysis. We also show how the sensitivity analysis can yield
insights into difficult and otherwise obscure interactions between budgets, requirements costs, and estimate
inaccuracies using a real-world case study.
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1. INTRODUCTION

Selecting a set of requirements for the next release of a software system is a complex
and demanding problem. However, making good engineering and business judgments
concerning these requirements is crucial because the decision process takes place so
early in the development of the next release [Cheng and Atlee 2007]. The problem of
choosing the optimal set of requirements to include in the next release of a software
system has become known as the Next Release Problem (NRP) [Bagnall et al. 2001;
Zhang et al. 2007].

The number of choices increases exponentially in the number of requirements, mak-
ing this a nontrivial problem. The optimization problem that underlies it is NP-hard.
The situation is further complicated by the uncertainties inherent to the decision
making process. The choice of requirements for the next release is affected by the
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expected cost and revenue that will accrue from the inclusion of each candidate
requirement.

Unfortunately, a quantitative assessment of development cost and expected revenue
can only be based on estimations at decision time. It is well known that such software
engineering estimates can be inaccurate [Shepperd 2007]. Even if the requirements
engineer is a perfect decision maker, their decisions might therefore be wrong because of
the unavoidable inaccuracy of the estimates upon which they are based. An inaccuracy
in the estimate of an attribute of one requirement may have a very different impact
on the optimal choice of requirements compared to the same inaccuracy concerning
the same attribute but of a different requirement. This raises a crucial question, upon
which the entire requirements decision process rests.

Which estimates have the greatest impact upon the optimal requirements
choice for the next release?

By identifying the budget values and requirements choices that have a higher impact
on the decision, the decision maker can choose to allocate greater resources to the
estimation process for these ‘sensitive’ inputs. This has the aim of improving the quality
of the information available where it counts, making best use of available resources. We
term the problem of ordering requirements’ attributes according to their impact on the
choice of requirements for the next release as the Requirements Sensitivity Analysis
(RSA) problem.

Sensitivity applies to an individual attribute of a specific requirement for which small
changes in attribute value have disproportionately large effects on the composition of
the optimal requirements set. Sensitivity can also apply to an entire project budget
for which the value of some attribute of many requirements has a disproportionate
effect. We can also focus on the sensitivity of an attribute or budget at specific levels of
inaccuracy. For instance, it can happen that a budget is most sensitive within a narrow
range of potential estimate inaccuracy or that an attribute is only sensitive above a
certain level of inaccuracy. Using sensitivity analysis, we can direct the decision maker
to those areas of specific sensitivity and thereby help to inform the decision making
process.

The relationship between cost, revenue, and inaccuracy cannot be easily understood
without automated decision support, because small changes in the value of a certain
attribute can have dramatic consequences on the overall solution. This is one of the
reasons why the problem of determining the ideal requirements set is so hard. Our
approach to the RSA problem is therefore to identify those attributes and budgets for
which the sensitivity is unusually high for a given level of inaccuracy simply because of
the particular happenstance of attribute value distribution. Recent work has indicated
that Search-Based Optimization of the NRP produces human-competitive results, indi-
cating that these approaches provide a good basis for decision support [de Souza et al.
2010].

In order to identify peculiarly sensitive values, our overall approach to RSA is to use
multiple optimizations, each of which models a possible inaccuracy in requirements. In
this manner, we follow the one-at-a-time (OAT) approach to sensitivity analysis, used
in other areas of sensitive analysis [Saltelli et al. 2000]. However, to the best of our
knowledge, we are the first authors to address this problem for requirements analysis.

We compute multiple NRP optimizations. On each occasion we perturb the value of
a single attribute of a single requirement in order to mimic the effect of inaccurate
estimation. We perturb by moving values both upwards and downwards, to capture
the effect of underestimates as well as overestimates. We perform small step size
perturbations of 5% from −50% to +50% of the unperturbed attribute value. Each
execution of the NRP optimization algorithm therefore constructs a solution set of

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 19, Pub. date: March 2014.



Exact Scalable Sensitivity Analysis for the Next Release Problem 19:3

requirements for an instance of the problem in which one estimate was inaccurate by
a given amount.

Much of the previous work on optimization algorithms for the NRP and release
planning has concerned the application of metaheuristic search algorithms [Bagnall
et al. 2001; Baker et al. 2006; Greer and Ruhe 2004]. Metaheuristic algorithms have
been favored, partly because they scale well and handle multiple objectives [Saliu and
Ruhe 2007a; Zhang et al. 2007]. By contrast, exact algorithms from the Operations
Research literature that locate a globally optimal solution have been less widely used.
Furthermore, though exact techniques have been previously applied to the NRP and
release planning [van den Akker et al. 2005], their scalability has not been explored in
the literature on NRP.

In order to attack the RSA problem using multiple executions of search-based opti-
mization, we need to use an exact algorithm. If we use an inexact algorithm, we cannot
be sure whether variations in results obtained from original and perturbed NRP prob-
lems accrue from inherent sensitivity or merely from the nature of the algorithms used
to optimize. However, in choosing to use an exact approach to optimization, we are
confronted with the issue of scalability.

In this article, we introduce and evaluate our approach to the RSA problem and a
variant of the Nemhauser–Ullmann’s algorithm [Nemhauser and Ullmann 1969] for
exact optimization of each NRP instance. Since the algorithm must be run A× M times,
where A is the number of attributes to be perturbed and M is the number of pertur-
bations applied, we experimentally study and report on the scalability of the approach
to demonstrate that it is practical. We also demonstrate that our approach is useful
in practice, presenting three case studies of its use on a real-world RSA problem. The
case studies reveal both peculiarly sensitive attributes and sensitive budgets.

The primary contributions of this article are as follows.

—We introduce the exact RSA problem and an OAT solution using the Nemhauser–
Ullmann’s exact optimization algorithm as a solver for each OAT step.

—We implemented our approach in a tool, OATSAC (One At a Time Sensitivity Analysis
for Cost-benefit)1, and used it to construct an experimental study of the scalability of
the approach. The results of the experimental study indicate that the approach scales
well for both size and complexity of NRP problems. The size is measured simply in
terms of the number of requirements from which the NRP choice has to be made.
The search-space size is exponential in this parameter. For complexity, we use the
degree of correlation between cost and value, since high correlations usually denote
complex (and therefore potentially less scalable) problem instances. The results of
the experimental study provide evidence to support the claim that our approach is
scalable and therefore practical.

—We report the results of a case study in which the approach was applied to the
Motorola NRP requirements set (see Section 6.1 for details). The results show how
a decision maker can use our approach to identify anomalous cases, both in terms
of requirement attributes that are especially sensitive and also entire budgets for
which the decision problem is sensitive. Identification of sensitive budgets allows
the decision maker to negotiate for a more stable (less sensitive) budget, thereby
addressing business concerns. Identification of attribute sensitivity allows the deci-
sion makers to target resources on sensitive attribute estimation, thereby addressing
management and engineering concerns. The fact that we found cases of both kinds of
sensitivity in our real-world case study provides evidence to support the claim that
our approach may be useful in practice.

1OATSAC is availble for download at http://ucase.uca.es/nrp.
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The organization of the rest of the article is as follows: Section 2 introduces the idea of
Requirements Sensitivity Analysis, based on iterative solutions to perturbed NRP in-
stances. Section 3 introduces the tool, OATSAC, which implements our approach and
discuses the algorithmic choices involved in producing the exact and scalable results
for NRP perturbations. Section 4 presents the research questions, the answers to which
are presented in Sections 5 and 6. In Section 7, we extend our analysis to interactions
between two requirements estimates (a problem we term the second order interaction
problem), and in Section 8, we describe the actionable findings that a decision maker
might exploit arising from our case study on the Motorola dataset. Section 9 considers
the threats to validity and limitations of our work, while Section 10 presents related
work on the NRP and sensitivity analysis. Section 11 discusses implications for sub-
sequent work and Section 12 presents directions for future work. Finally, Section 13
concludes.

2. REQUIREMENTS SENSITIVITY ANALYSIS

Sensitivity analysis (SA) consists of assessing the contribution to the overall uncer-
tainty of a solution that accrues from the individual uncertainty due to some specific
element of the solution [Helton et al. 2006]. In this article, we adopt a one-at-a-time
(OAT) approach to sensitivity analysis [Saltelli et al. 2000], which is also referred to as
Local Sensitivity Analysis [Saltelli et al. 2008] and Nominal Range Sensitivity Analysis
[Frey and Patil 2002] in the literature.

OAT methods vary one parameter at a time repeatedly, while all of the other pa-
rameters are maintained at their fixed, baseline values. OAT is the most popular SA
practice in the literature [Saltelli and Annoni 2010]. Its strengths can be summarized
as follows.

—The baseline vector provides a safe starting point from which to generate all per-
turbed versions. This minimizes the chance of generating invalid inputs.

—OAT guarantees that all impact is solely due to the perturbation in the input, pro-
vided that the model does not have a stochastic term.

—OAT does not produce type-I statistical errors; a nonzero impact always implies
impacts from the perturbed input.

Hitherto, there has been no previous work on exact SA (OAT or any other form of
SA) for the Next Release Problem in Requirements Engineering. This is an important
omission in the previous literature, because the choice of requirements for the next
release is a decision that is inherently and intrinsically based upon estimates that are
widely believed to be unreliable. Nevertheless decisions concerning requirements do
have to be taken and these decisions, coming as they do early in the lifecycle, can have
a profound effect on the cost and effectiveness of the overall system. As this article
shows, using OAT, it is possible to gain insight into those estimates that can have
dramatic and otherwise unexpectedly high impact on the choice of requirements.

Our OAT approach is based on multiple iterations of the NRP optimization problem
in search-based software engineering (SBSE), a subfield of software engineering that
has grown rapidly in recent years [Colanzi et al. 2012; Freitas and Souza 2011; Harman
2007; Harman et al. 2012a, 2012b, 2012c; Zhang et al. 2008]. Each iteration caters for a
different perturbed version of the original estimates. The NRP deals with the selection
of a subset of requirements based on their desirability, for example, on their total
expected revenue, while subject to constraints such as a limited budget [Bagnall et al.
2001]. The original formulation of NRP, due to Bagnall et al., considers an objective
function whose value depends on the satisfaction of a set of customers via the inclusion
of their demanded requirements in the next release of a complex software product; the
aim of the problem being to select the subset of requirements (and, thus, of satisfied
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customers) maximizing the value of the aforementioned function without exceeding
the company’s budget.

More formally, let S be a set containing n requirements. For each requirement x ∈ S,
let cost(x) represent its cost, and revenue(x) its revenue. The extension of cost and
revenue to S can be simply defined as follows.

cost(S) =
∑
x∈S

cost(x),

revenue(S) =
∑
x∈S

revenue(x).

This NRP problem consists of selecting the subset of requirements R with the highest
revenue and with cost in budget. Let B the budget, then R ⊆ S is an optimal solution
to the NRP problem if cost(R) ≤ B, and for all Q ⊆ S, the following property holds:

cost(Q) ≤ B → revenue(Q) ≤ revenue(R).

We can achieve this by maximizing revenue(R) subject to R ⊆ S and cost(R) ≤ B. Let
c = [c1, . . . , cn] and r = [r1, . . . , rn] the cost and revenue vectors for the n requirements
in S, and s = [s1, . . . , sn] ∈ {0, 1}n a solution vector, that is, a bitset identifying a subset
of S. Then, we obtain the following equivalent optimization problem, which is a binary
integer linear program.

NRP : max s · r
subject to
s · c ≤ B
s ∈ {0, 1}n

(1)

It is clear from the preceding discussion that the NRP problem is essentially the
classical 0/1 Knapsack Problem (KP). This is an NP-hard problem [Karp 1972]. This
formulation assumes that costs and values are additive. If this assumption does not
hold (e.g., there are synergies between requirements that reduce costs), then a more
complex formulation is required. The exploration of such models and their impact on
sensitivity analysis is an interesting topic for future work.

Previous work on solving the NRP problem has focused on metaheuristic optimiza-
tion: while deterministic optimization techiques such as the greedy heuristic has been
used [AlBourae et al. 2006], many have applied stochastic optimisation [Feather and
Menzies 2002; Greer and Ruhe 2004; Jalali et al. 2008; Ngo-The and Ruhe 2009; Ruhe
and Greer 2003; Ruhe and Ngo-The 2004; Zhang et al. 2008]. However, the inherent
randomness in stochastic optimization poses new challenges to sensitivity analysis: if
a what-if scenario yields a result different from the original instance of NRP, there
is no way of knowing whether the difference is due to the stochastic nature of the
approach or the impact of the parameter perturbation. Deterministic approximation
such as greedy algorithms would eliminate the randomness but still at the cost of the
optimality of the solution. Previous work has demonstrated that Greedy approaches
are far from optimal in practice for requirements selection tasks [Ruhe et al. 2003].

To guarantee both the optimality of the solution and the lack of inexactness, it is
necessary to use an exact algorithm for NRP: solutions obtained by exact algorithms will
be optimal. However, this in turn raises the scalability concern, because OAT requires a
large number of what-if problem solving experiments to produce a sufficiently detailed
sensitivity analysis. Our research question addresses this question of scalability of the
OAT approach combined with an exact algorithm.
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Fig. 1. Overall architecture of tool.

ALGORITHM 1: OAT Sensitivity Analysis Procedure

Input: An NRP instance, P0, and a set of n perturbation criteria, I
Output: Visualizations of n different scenarios
(1) � Solve the original instance as a reference
(2) S0 ← solve(P0)
(3) S ← Ø
(4) � Generate n different perturbations
(5) P ← Ø
(6) foreach i ∈ I
(7) Pi ← apply i to P0
(8) P ← P

⋃{Pi}
(9) � Solve perturbed problem instances
(10) foreach Pi ∈ P
(11) Si ← solve(Pi)
(12) S ← S

⋃{Si}
(13) � Visualize the results
(14) foreach Si ∈ S
(15) Visualize the difference between Si and S0

3. THE OATSAC RSA TOOL

Algorithm 1 outlines the overall procedure of one-at-a-time sensitivity analysis for
NRP. Given the original NRP instance, P0, and a set of predefined perturbations, we
generate and solve n different versions of the original instance. The results are then
compared to the solution to the original instance for the visualization of the differences.

Figure 1 shows the overall architecture of our OAT sensitivity analysis tool, OATSAC

(One At a Time Sensitivity Analysis for Cost-benefit), which consists of three main
components: OAT perturbator, NRP solver, and visualization. OAT Perturbator accepts
the original problem instance and a set of perturbation criteria as input, and gener-
ates a set of perturbed problem instances accordingly. These are fed into NRP Solver.
While we use the Nemhauser–Ullmann’s exact algorithm, any other NRP solver can be
plugged in. The visualization component compares the different results from perturbed
problem instances and highlights the impacts in three different types of heat-maps.

We use the term PIAC (percentage of increase in actual cost) to denote an estimate
inaccuracy. The PIAC is the degree to which the estimator underestimated the true
cost (since the actual cost is increased). A PIAC value of x indicates the the actual cost
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is x% larger than the estimated cost. We allow both positive and negative values for
PIAC, so that a negative value indicates an overestimate of cost.

—Snapshot Heatmap. These report the impact that a specific perturbation has on all
requirements and budgets.

—Cross-PIAC Heatmap. These summarize the impact that each budget receives across
the entire set of perturbations.

—Cross-Budget Heatmap. These summarize the impact of each perturbation across the
entire budget range that the decision maker is interested in.

A crucial component of our tool is the choice of NRP solver to plug in. In this article,
we report the results of the use of an implementation of the Nemhauser–Ullmann’s
algorithm, using this version of OATSAC to experimentally assess the scalability of this
algorithm for solving multiple NRP problems as a component to RSA. We also replace
this component with a faster, but less precise, greedy algorithm, showing how this is
unsuited to the RSA problem, though it is faster, just because it is not exact.

3.1. NRP Solver Module: Nemhauser–Ullmann

The NRP Solver must repeatedly execute NRP instances, each of which has undergone
some perturbation with respect to the original one to simulate estimation errors. Since
there are many such executions required, and obtaining exact solutions is NP-hard, a
great deal of care is required in the design and implementation of this module.

One important family of pseudopolynomial algorithms [Garey and Johnson 1978,
1979] that can be applied to the NRP can be obtained by dynamic programming. In
particular, dynamic programming by costs is an efficient form of implementing the
corresponding Bellman’s equation when the number of requirements and the budget
are moderate.

z(S, B) =

⎧⎪⎨
⎪⎩

0 if S = ø
z(S − {x}, B) if S �= ø ∧ cost(x) > B
max{z(S − {x}, B), z(S − {x}, B− cost(x)) + revenue(x)} otherwise.

(2)

In Eq. (2), the set S represents a finite collection of requirements, B is the budget,
z is the maximum revenue that can be achieved with any R ⊆ S within the budget
constraints, and x is an arbitrary requirement in S whose cost is cost(x) and its revenue
is revenue(x).

However, efficient implementations of this scheme typically require integer costs
and thus they are not appropriate for RSA, because perturbations naturally produce
fractional values. Of course, both the costs and the budget can be scaled to avoid
fractional values while retaining precision, but then a previously modest size problem
may be transformed into an unfeasibly demanding problem. Whether this unfeasibility
occurs in practice will depend upon the specific instances considered. If there is a fine-
grained distinction between true costs, then scaling to ensure integer revenues will
result in a (potentially) exponential explosion in problem size. Since a problem can have
an arbitrary precision of revenues for requirements scores and costs (so arbitrarily fine
grained revenues), we cannot be sure that this exponential increase will not occur in
practice.

Therefore, though such a scaling approach might be applied in some instances, it is
unlikely to provide a general solution in a reasonably large set of cases. The decision
maker is unlikely to be an optimization expert and aware of the intricacies of the
algorithm. Were such a non-specialist decision maker to rely on a technique that used
scaling, we could never be sure that the algorithm at the heart of the approach would
not (unexpectedly and inexplicably from the decision maker’s point of view) fail to give
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an answer in reasonable time. For this reason we need to turn to an alternative way of
providing exact scalable solutions to multiple instances of the NRP.

Approximation algorithms are far more efficient than exact algorithms, typically
polynomial versus exponential. However, they might mislead the decision maker who
is confronted by a sensitivity analysis involving hundreds of solutions corresponding to
perturbations of a given NRP instance. Deviations from exact solutions may highlight
the wrong requirements as being responsible of changes in the total revenue resulting
in ill-informed decisions and sensitivity analysis that is simply wrong.

Therefore, we introduce Nemhauser–Ullmann’s algorithm (NU) at the core of the
NRP Solver component of OATSAC. We also implemented a greedy approach for com-
parison and present results (in Section 6.4) that demonstrate that its inaccuracies
are problematic, as predicted, thereby motivating our proposed approach, based on an
exact algorithm.

ALGORITHM 2: Nemhauser–Ullmann algorithm for NRP

Input: A set of n requirements, R, and a budget, B
Output: A set of selected requirements, S
(1) � Compute the optimal values
(2) m[0] ← zero()
(3) for k ← 1 to n
(4) f ← translation(m[k − 1], cost(Rk), revenue(Rk))
(5) m[k] ← maximum(m[k − 1], f )
(6) � Recover an optimal solution
(7) S ← Ø
(8) for k ← n to 1
(9) if apply(m[k], B) �= apply(m[k − 1], B)
(10) S ← S ∪ {Rk}
(11) B ← B− cost(Rk)
(12) return S

Our particular rendition of NU for NRP is presented in Algorithm 2. The algorithm
was implemented in standard C++. Our description is based on the notion of stair-
case function. A staircase function is just an increasing function with a finite number
of steps. These functions can be readily represented as lists of pairs containing the
coordinates of each step.

First, the algorithm computes an array m of n + 1 staircase functions. The function
m[k] represents the optimal values that can be obtained by taking into account just the
first k requirements.2 When a new requirement is considered, the previous function
is translated by adding the corresponding cost and revenue to each of its pairs. The
resulting staircase function, f , may be better than the previous one at some points,
while being worse at others. The maximum of both functions represents the combined
optimal values.

Applying function m[n] to cost B, which is the budget, we get the best revenue that can
be obtained when all the requirements are taken into account. A subsequent simple
backward search allows recovering the precise requirements involved in an optimal
solution. A set, S, containing the indexes of those requirements is returned.

2Function m[0] is just the zero function, a convenient special value.
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The technically challenging part of the algorithm is the efficient implementation of
function maximum. This can be done in linear time with a method resembling the
merge stage of mergesort. Observe that maximum is always invoked on two functions
with the same number of points, say pk−1 for k ≥ 1 with p0 = 1. Nevertheless, the
resulting function can have up to pk = 2pk−1 points. Therefore, it follows that in the
worst-case situation where such a pathological case would happen again and again,
the algorithm would take an exponential amount of time in n.

3.2. NRP Solver Module: Greedy Algorithm

In order to investigate the benefits of using an exact algorithm, our case studies
(Section 6) also report results for a greedy algorithm. Given a set of all requirements,
R, and a budget, B, the greedy heuristic used in the study selects requirements in
decreasing order of the revenue per cost ratio. When tied, requirements with higher
revenue get prioritized; ties in revenue are, in turn, resolved in favor of the requirement
with lower cost. The pseudocode of this greedy algorithm is presented as Algorithm 3.

ALGORITHM 3: Outline of Greedy Approach for NRP

Input: A set of n requirements, R, and a budget, B
Output: A set of selected requirements, S
(1) � sort R with descending order of revenue(Ri )

cost(Ri )
(2) sort(R)
(3) � Greedily select the most promising requirements in budget
(4) S ← Ø
(5) k ← 1
(6) while k ≤ n ∧ B �= 0
(7) if cost(Rk) ≤ B
(8) S ← {Rk}

⋃
S

(9) B ← B− cost(Rk)
(10) k ← k + 1
(11) return S

4. RESEARCH QUESTIONS

In order to evaluate whether our approach and the OATSAC tool that implements it are
efficient and useful for the RSA problem, we conduct an experimental study concerning
the efficiency of the approach and a set of case studies to explore its usefulness as a tool
for revealing otherwise undiscovered sensitivity in budget and requirements. Finally,
we compare the results obtained from the exact approach with those obtained from the
faster, less precise approach, based on the greedy algorithm to explore the potential
this might have to mislead the decision maker.

This is formalized as three research questions for which the rest of the article
presents results. First, the need to use exact algorithms for sensitivity analysis raises
an important question: what is the realistic cost of using an exact algorithm for
sensitivity analysis of NRP? This question is, in turn, formulated more precisely as
the following research questions.

RQ1. Impact Factors. Which factors affect the execution time of the exact algorithm for
NRP?
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RQ2. Scalability Measurement. Based on RQ1, how well does the exact algorithm for
NRP scale?

In addition to the experimental study of scalability, the article also presents the
results of a case study that considers realistic scenarios in which our approach to
sensitivity analysis can help the decision maker. The case study uses a real-world re-
quirement dataset from Motorola and investigates the insights that can be provided to
the decision maker that would not be possible without the aid of the sensitivity analysis.

RQ3. Insight. What are the possible benefits that a decision maker can expect from
using the sensitivity analysis?

RQ1 and RQ2 are answered by statistically analyzing the measured execution time
of the exact algorithm. RQ3 naturally requires a more qualitative approach, based on
usage scenarios for real-world NRP data.

5. SCALABILITY STUDY

The first two research questions are studied by generating synthetic problem instances
of different sizes on which we apply the Nemhauser–Ullmann algorithm. The synthetic
problem instances are not only varied on their sizes, but also on their difficulty, which
will be explained in the following.

5.1. Generating Problem Instances

The research questions outlined in Section 4 require two control variables: the size
of the problem (i.e., the number of requirements) and the difficulty of the problem
instance. The scalability experiment uses synthetically generated problem instances
that correspond to a predefined set of control variables.

While it is trivial to generate synthetic problem instances with predetermined prob-
lem sizes, generating problem instances with varying problem difficulties is not, in
general. Fortunately, it is known that KP instances become harder when there is higher
correlation between the cost and the revenue of items [Pisinger 2005]. Therefore, our
synthetic instance generator controls the correlation factor between the cost and the
revenue of the requirements in the problem instance in order to control its relative
difficulty. Unlike Pisinger, we use Pearson’s correlation as the measure of correlation
and, thereby, this aspect of problem difficulty. We use Pearson’s correlation because it
is the most widely used and standard correlation measure used in statistical analysis,
whereas Pisinger’s correlation is more concerned with easing instance generation and
theoretical analysis.

5.2. Experimental Environment

The scalability experiments were performed using a machine with an Intel Core i7 2.67
GHz CPU and 12GB RAM running Ubuntu 10.10. While the CPU provides a multicore
environment, the algorithm used in the article has been implemented to run in a single
thread. The execution time for each run of the algorithm has been measured using the
standard Unix utility, time.

In order to answer RQ1 and RQ2, multiple instances of synthetic NRP instances
were generated with varying numbers of requirements and relative problem difficulty
levels, that is, the correlation between the cost and the revenue. In total, 15 different
problem sizes ranging from 100 to 1500 requirements with steps of 100 were used;
similarly, the correlation factor ranged from 0% (random costs and revenues) to 100%
(equal cost and revenues) with steps of 5%. This results in 15 · 21 = 315 problem
configurations. In order to capture a sufficiently large sample of possible problem
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instances for each of the given control parameters, 50 different problem instances were
generated from each of the 315 problem configurations. Each instance consists of a set
of requirements with costs and revenues that are synthetically generated to uniformly
sample the space of possible problem instances with respect to a fixed correlation. For
each problem instance, the budget for NRP was set to the half of the total cost of all its
requirements. In total, 315 ·50 = 157,500 different instances of NRP were solved using
our implementation of the NU algorithm to provide results on scalability.

5.3. Results and Analysis

The results of our analysis of scalability are depicted in Figure 2. Figure 2 (upper
graph) shows the box plots of the execution time of NU for NRP against problem
instances with increasing number of requirements. Each datapoint corresponds to one
execution of the algorithm on a synthetically generated problem instance. The box plots
depict the distribution of 50 random problem instances generated for a single problem
configuration.

The growing problem size increases the execution time of the algorithm almost poly-
nomially, but the algorithm takes less than 1 minute for a problem instance with as
many as 1,500 different requirements. In realistic scenarios, the number of require-
ments considered for a single release may be significantly fewer than 1,500, which
makes our version of the Nemhauser–Ullmann algorithm scalable for multiple execu-
tions of NRP for use in an OAT approach to RSA.

Figure 2 (lower graph) shows the box plots of the execution time of Nemhauser–
Ullmann algorithm for NRP against problem instances with increasing correlation
between the cost and the revenue of each requirement. As with the upper graph of
Figure 2, each datapoint corresponds to a single execution of the algorithm. While
the increasing correlation factor does result in increasing execution time, the impact
is less than that of the increasing number of requirements and the growth is almost
polynomial. The only exception to polynomial growth occurs when correlation is close
to 1.0. However, the resulting execution time remains feasible, even in such extreme
cases.

Table I presents the results for the average time data for configurations (i.e., a
pair of correlation and problem size) with 10% correlation factor intervals. Given the
number of requirements, n, and the correlation between the cost and the revenue of
each requirement, ρ (0 ≤ ρ ≤ 1), the following model of the time behavior, t(n, ρ), fits
the experimental data very well:

t(n, ρ) = an2 exp ρ + bn2 + cn log n. (3)

Coefficients for Eq. (3) are a = 6.56 · 10−1, b = 4.67 · 10−6, and c = −1.14 · 10−3.
Figure 3 shows the plot of the experimental model of the time behavior together with
its residuals. The R2 value for the fit is 0.99. We do not claim that the model explains
the behavior of the algorithm under every circumstance, which would be clearly mis-
leading considering that the worst-case execution time for NU is known to be O(2n)
[Nemhauser and Ullmann 1969]. In pathological cases, our approach still may not ap-
ply. Nevertheless, as these experimental results indicate, there is strong evidence to
indicate that our use of NU scales well to RSA.

6. CASE STUDY

The previous section provided evidence that our overall approach to RSA can scale to
handle requirements problems with many requirements and with cost-revenue corre-
lations that are known to cause exponential behavior in the underlying optimization
algorithm. However, these results say nothing about whether the overall approach,
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Fig. 2. The upper graph shows plots of execution time (seconds) for our implementation of the Nemhauser–
Ullmann algorithm against NRP instances with increasing number of requirements. The lower graph show
plots of execution time (seconds) against NRP instances with increasing correlation between the cost and
revenue of each requirement. It can be seen from the upper graph that execution time grows almost poly-
nomially. From the lower graph, it can be seen that the impact of higher correlation values is also almost
polynomial throughout the range of correlation values (except when the correlation value is very close to 1.0).

implemented in OATSAC, can help find interesting, important or insightful instances of
sensitivity in real-world RSA problems.

To address this question, we present a detailed investigation of a requirements anal-
ysis problem from Motorola. In this problem, the requirements are potential features
for mobile (cell) phones. While the specific details of the features and phones cannot
be revealed for confidentiality reasons, this does not prevent us looking for interesting
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Table I. Execution Time (seconds) of Nemhauser–Ullmann’s Algorithm for NRP for Different
Problem Configurations

Correlation
Size 0 % 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %

100 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.04 0.20
200 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.22 0.26 0.81
300 0.38 0.40 0.42 0.45 0.47 0.50 0.53 0.58 0.65 0.76 1.86
400 0.83 0.88 0.91 0.97 1.03 1.09 1.18 1.25 1.35 1.57 3.31
500 1.50 1.57 1.67 1.75 1.86 1.98 2.07 2.21 2.41 2.76 5.25
600 2.43 2.56 2.66 2.80 2.99 3.13 3.29 3.54 3.82 4.35 7.68
700 3.62 3.76 4.03 4.20 4.40 4.64 4.93 5.26 5.66 6.28 10.55
800 5.07 5.40 5.65 5.91 6.32 6.54 6.90 7.28 7.81 8.71 13.92
900 6.99 7.33 7.70 8.07 8.46 8.84 9.31 9.95 10.56 11.73 17.73

1000 9.13 9.62 10.07 10.58 11.06 11.51 12.08 12.79 13.60 14.80 22.25
1100 11.63 12.33 12.88 13.36 14.02 14.55 15.53 16.04 16.94 18.46 26.51
1200 14.42 15.39 16.02 16.64 17.26 17.98 19.07 19.76 20.84 22.67 31.75
1300 17.82 18.67 19.68 20.25 21.21 22.08 23.07 24.17 25.57 27.37 37.39
1400 21.48 22.48 23.49 24.37 25.46 26.57 27.58 28.58 30.32 32.48 43.32
1500 25.46 26.55 27.85 28.93 30.14 31.38 32.51 33.96 35.64 38.12 50.16

Fig. 3. The plot of the fit from the regression analysis, t(n, ρ) = an2 exp ρ + bn2 + cn log n and the plot of
residuals. The R2 of the fit is very high (0.99), indicating a very good fit to the observed experimental data.

and potentially insightful instances of peculiarly sensitive budgets and requirements
and the interplay between them.

Using this dataset we do, indeed, find instances of both peculiarly sensitive require-
ments and peculiarly sensitive budget levels. Identifying and investigating these sen-
sitivities would be very hard, if not impossible, without some form of decision support,
such as that provided by our RSA approach, implemented in OATSAC.

6.1. Requirements Data

The case study considers a dataset from Motorola that contains 35 independent re-
quirements. The dataset contains the cost of implementation and the expected revenue
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for each requirement, which form the cost function cost and the desirability function
revenue in Section 2, respectively. The expected revenue data have been provided by
the customers, based on the desirability of having certain features in the next release.
The dataset also contains 35 different budget values that are set by human experts.

6.2. Sensitivity Analysis

The sensitivity analysis we performed simulates misestimation of the cost of imple-
menting a requirement by applying different PIAC values to the original cost of a re-
quirement. For example, a positive PIAC value p means the actual cost has increased
by p% of the estimation (underestimation). Similarly, a negative PIAC value -p means
the actual cost has decreased by p% of the estimation (overestimation).

The sensitivity analysis uses PIAC values ranging from −50% to 50% with 5 percent-
point intervals for each requirement. This is a matter of taste and can be varied without
changing our approach. We find that this is a good balance of range and granularity.
For n requirements, this results in 21n different ‘what-if ’ scenarios that need to be
solved for the sensitivity analysis, just for a single given budget proposal.

The total impact is computed separately for all positive PIAC values and for all
negative PIAC values. The impact for each PIAC value is computed as the difference
in overall revenue with respect to the solution of the unperturbed instance. The total
impact of a misestimated requirement for each set of PIAC values is the sum of their
impacts.

6.3. Results and Insights

In this section, we present the results of two case studies that illustrate how our
approach can be used to support decision makers as they consider the various options
available in negotiations over budgets. We consider two top-level scenarios for which
sensitivity analysis can be useful in practice, applying both to the Motorola dataset.

In the first study, we consider a situation in which a budget level turns out to be
particularly sensitive over all possible requirement inaccuracies. In the second study,
we consider a scenario in which a particular requirement turns out to be atypically
sensitive, regardless of the budget chosen. In this way, these two studies illustrate
the two top-level concerns for the decision maker: sensitive budgets and sensitive
requirements.

We will use the OATSAC heat map visualization of the sensitivity data in order to
locate sensitive budgets and requirements. As the results show, the use of heat maps
allows the decision maker to quickly and easily identify unusual areas of sensitivity
within their candidate solution space. The scenarios show that sensitive budgets and
requirements can easily be identified using the sensitivity heat map. However, they also
reveal that the explanation for a particular sensitivity can be nontrivial and thereby
non-obvious without the aid of OATSAC.

6.3.1. Sensitive Budgets. Consider the heat maps in Figure 4. These two heat maps show
a perspective of our RSA results for the Motorola data set. The total impact of positive
PIACs (Figure 4(a)) and negative PIACs (Figure 4(b)) on each budget (X-axis) for every
requirement (Y-axis) is illustrated by the degree of darkness on the heat maps. Zero
impact is represented as white color on both heat maps. Although darkness represents
the difference on revenue caused by misestimation, in Figure 4(a), it represents the
loss on revenue caused by +PIACs on cost of requirements, whilst in Figure 4(b), it
represents the gain on revenue caused by −PIACs on cost of requirements. For example,
consider requirement 13 for budget 450: the sum of all losses in revenue for the positive
PIAC values is 6.
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Fig. 4. Budgets {5440, 6740} have zero surplus budget, which makes them sensitive to underestimates
(+PIAC). On the other hand, budgets {1700, 3620, 5330} have relatively more surplus budget {5.3%, 4.9%,
13%}; as a result, they are sensitive to overestimates.
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Some allocations do not fully use the available budget creating a small budget sur-
plus. This happens, for a solution s, when the total cost of solution s is lower than
the available budget, but no other solution exists that is within budget and enjoys a
higher value. In such situations, there is a budget surplus (computed as the amount
of budget available minus the total cost of the requirement selected for solution s). As
shown in Figure 4, in general, budgets with surplus close to zero are more sensitive to
+PIAC, and budgets with “rich” surplus are more sensitive to −PIACs. For example,
the increasingly dark area on the left to the budget 5,330 in Figure 4(b) and the de-
creasingly dark area on the right to the budget 5,440 in Figure 4(a) are both caused by
the increasing percentage of surplus budgets from left to right around that area.

For the heat map in Figure 4(a), starting from budget 5,440 to the two budgets on its
right, because the surplus is growing away from the level of zero, it becomes easier to
maintain the same level of overall revenue when the cost of the selected requirement
was underestimated (+PIAC). This is reflected on the heat map as a trend of decreasing
impact on the right of budget 5,440, meaning that budgets’ ability of absorbing error is
increasingly stronger when surplus is growing.

On the other hand, considering the four budgets on the left of budget 5,330 for the
heat map in Figure 4(b), because the surplus is increasing to “richer” levels from left to
the right, it becomes easier to accommodate the extra unselected requirements when
selected requirement was overestimated (−PIAC). This is reflected on the heat map as
the trend of increasing impact on the left of budget 5330, meaning that increasingly
more revenue is added into solutions when surplus is growing.

More specifically, let us observe the dramatic sensitivity at the following budgets:
{1,700, 3,620, 5,330, 5,440, 6,740}. Their sensitivity is revealed by the noticeably darker
colors present around these budget levels. Closer analysis of the data reveals that these
sensitive budgets can be classified into two types depending on the level of its surplus
budget.

—Type 1. In budget 5,440 and 6,740, as shown in Figure 4(a), the original optimal
requirement assignment has available very little surplus budget.

—Type 2. In budget 1,700, 3,620, and 5,330, as shown in Figure 4(b), there is a relatively
large surplus available in budget: {5.3%, 4.9%, 13%}.

Clearly for Type 1 budgets, the lower the budget surplus, the less room for maneuver
should there be for an inaccuracy in the estimation of costs. This can be expected to be
a general trend. Indeed, for the Motorola data set, there is a good fit for an exponential
function f (x) = 356.0 exp(−139.8x) to the graph of sensitivity to budget surplus, as
shown in Figure 5.

One might be tempted to think this applies to all low surplus budgets, declaring these
all to be sensitive budgets. However, this approach would be unreliable. For instance,
observe that, though Figure 5 reveals a clear overall trend, it also contains notable
outliers. This means that one cannot simply assume that low budget surplus leads to
high sensitivity. For example, the budgets 100 and 600 have zero surplus, which is the
tightest of all budgets for any solution. These turn out to be unremarkable and not
particularly sensitive budgets. This is so because it turns out that there are plenty of
unselected requirements with similar costs that can be substituted for misestimated
requirements.

By contrast, the budget 5,330 is a rather sensitive one, as revealed by the heat map
in Figure 4(b), yet it has a relatively high budget surplus. This is due to the fact that
high budget surplus makes a budget sensitive to negative PIACs because of decreasing
cost of selected requirement can make more room for either (1) accommodating extra
unselected requirements, or (2) substitution by requirements combinations with higher
revenue. This type of budget was classified as Type 2 sensitive budgets.
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Fig. 5. Strong correlation between impacts of +PIAC and surplus percentage (Spearman Correlation Coef-
ficient: ρ = 0.92). However, two outliers: budgets 100 (lower) and 600, have zero surplus on budget but they
are not sensitive to underestimated cost of requirement (+PIACs) because of the flexibility of substitutions.

Furthermore, one cannot assume, even for a budget identified as sensitive, that
all requirements will be sensitive, nor that all levels of inaccuracy will be equally
important. For example, consider again, the budget level 5,440, which was revealed to
be a sensitive one for Figure 4(a). Observe that requirement 27 is not at all sensitive
at this budget level, even though all other requirements are for this budget level. In
this case, further detailed analysis reveals that this requirement has the same cost as
another requirement, and that this means that the other requirements can be chosen
in preference to it, making it unimportant at that particular budget level.

Once again, one might be tempted to adopt the assumption that all such “equal cost”
requirements would be similarly insensitive, but once again, this would be a misplaced
assumption; requirement 13 has identical cost to requirement 14, yet both are sensitive
at this highly sensitive budget level of 5,440, as the heat map shows on Figure 4(a).
This visual illustration of sensitivity can be useful to the decision maker. We discuss,
in more detail, how a decision maker might find actionable results using our heat maps
in Section 8.

6.3.2. Sensitive Requirements. The previous section illustrated how the OATSAC heat map
can help to identify sensitive budget levels. In this section, we turn our attention to
using OATSAC to identify sensitive requirements.

Consider the OATSAC heat map in Figure 6 which shows the impact of each require-
ment by each level of PIAC. The level of darkness on the heat map represents the degree
of difference caused by corresponding PIAC (horizontal axis) on a specific requirement
(vertical axis) summarized over all budgets. The corresponding requirements on the
vertical axis are arranged in ascending ordered of their cost, and ‘equal cost’ require-
ments are arranged in descending order of their revenue.

In general, requirements with higher costs have higher sensitivity to errors, because
applying the same percentage of error (PIAC) on the cost of requirements, the most
expensive requirements tend to entail a larger absolute error. This can be expected to
be a general trend. Indeed, as shown in Figure 7, the level of sensitivity of a require-
ment has a strong correlation with its cost. The statistical analysis also confirms this
claim with a value of ρ = 0.94 for the Spearman Correlation Coefficient. Requirement
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Fig. 6. The impact of each requirement with different levels of misestimation.

Fig. 7. Cost of requirements vs. total impact of each requirement. More expensive requirements (on the
right) do not necessarily have more impact than the cheaper (i.e., to the left) ones. When the costs are the
same, those with lower revenue (on the right) have lower impact, for example, these requirement sets have
identical cost: {6, 7, 8}, {10, 11, 12}, {13, 14}, {17, 18}, {19, 20, 21}, {26, 27}, and {29, 30}.

revenues also play an important role during the selection process. Naturally, one would
expect that when two requirements have the same cost but different revenue, the re-
quirement with lower revenue is always less sensitive.

However, though these are general expectations, there are exceptions, and the OAT-
SAC heat map helps to reveal these exceptions. Requirement 35 has a higher cost and
with the same revenue as requirement 34, but, as revealed by the heat map in Figure 6,
requirement 35 has a relatively smaller impact than requirement 34.
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Fig. 8. Rank correlation between the total impact of each PIAC and PIAC value. The trend is monotonic.

6.3.3. Sensitivity to Specific Levels of Misestimation (PIAC). There is another interesting ob-
servation, as shown in Figure 8: underestimations on the cost of requirements (negative
PIAC, shown on the right half of the figure) have higher absolute impact than overes-
timations. Closer examination of the data reveals that this is due to the large number
of available substitute requirements in the Motorola dataset. That is, it turns out that
often there are two or more equally good solutions with same revenue in this particular
dataset so that the misestimation of one requirement value might not affect the overall
solution; the solution can be retained by a like-for-like substitution. By contrast, when
the PIAC is negative, indicating an underestimation of requirement cost, either more
surplus budget becomes available, or the cost of some unselected requirement becomes
sufficiently small that it can be accommodated within the increased surplus.

6.4. Why the Use of an Exact Algorithm is Essential for RSA

The greedy algorithm provides a nonstochastic approximation for NRP. Although the
deterministic nature of the algorithm makes it an ideal candidate for an OAT approach,
the errors in approximated solutions can mislead the decision maker. In this article,
we demonstrate the negative impact of using a non-exact heuristic for SA. The greedy
algorithm used in this comparison selects requirements in the descending order of their
revenue-to-cost ratio, subject to the constraint that the total cost does not exceed the
given budget.

Figure 9 illustrates the comparisons of the results for NU-OATSAC with Greedy-
OATSAC for a PIAC = −50%. While Greedy-OATSAC produces results that are superficially
similar to NU-OATSAC, there are pairs of requirements and budgets that show very
different levels of impact. Certain impacts are wrongly either ignored or exaggerated by
Greedy-OATSAC. For example, the darker areas in the Greedy-OATSAC results represent
lost revenues, which would be regarded as a significant impact. However, the NU-
OATSAC shows that the revenue can be retained. This illustrates the importance of
using more expensive (but exact) algorithms for RSA.
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Fig. 9. Comparison of greedy and NU NRP Solver results. The two graphs show the impact on total revenue
with 50% overestimation (PIAC = −50%) on the cost of each requirement according to each algorithm. Note
that the greedy algorithm misreports many heat map values. This can mislead the decision marker. The
NU algorithm is exact and so all reported heat map values are guaranteed to reflect only the impact of
sensitivity on the NRP, while for greedy, the heat map results are confounded by the inherent imprecision of
the algorithm.
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7. CATERING FOR HIGHER ORDER ESTIMATE INACCURACY EFFECTS

In this section, we consider the problem of interactions between estimate inaccura-
cies. Clearly, as the number of interactions between estimate inaccuracies increases,
the computational cost of accounting for them grows exponentially. We call the prob-
lem of analyzing interactions between estimate inaccuracies involving two different
requirements the second-order interaction problem. More generally, we use the term
higher-order interaction for any interaction between inaccuracies involving n require-
ments for n > 1.

In order to cater for second-order interaction problem, we need a different approach
to visualization. However, at this order, it remains possible to consider all possible inter-
actions, giving the decision maker a complete picture of the possible impact of estimate
inaccuracies, in which two inaccuracies occur simultaneously. The problem of analysis
of higher orders remains a topic for future work (discussed briefly in Section 12).

We use a four-dimensional format to display the second-order interactions for a
given level of estimate inaccuracy (PIAC). We use a three-dimensional plot for the
axes relating to the two requirements to which the PIAC is applied and show the
corresponding budget as the third axis. In order to capture the impact of the interaction
between the two requirements for a given budget and PIAC level, we show this as a
color intensity (the ‘fourth’ dimension). Naturally, this style of visualization is best
viewed and explored interactively in color, though it can also be appreciated in black
and white, through the corresponding shading.

In order to assess the impact of second-order effects, we measure the additional im-
pact obtained from the interaction of the two requirements over and above the impact
observed for the sum of each of the individual impacts. This provides a visualization
of the additional effects due the interaction of estimate inaccuracies (the second-order
effects). Note that the additional impact can be positive or negative, as it is the dif-
ference between the joint impact of two requirements and the sum of their individual
impacts, and the former may be larger or smaller than the latter.

Figure 10 shows the effects of underestimates, when the degree of underestimation
is the maximum considered in this article. That is, in this figure, the true cost is 50%
greater than estimated, so PIAC = +0.50). Figure 11 shows the effects of overestimates,
when the degree of underestimation is the maximum considered in this article.

As can be seen from these two figures, the additional impacts that accrue from
second-order effects tend to impact most on the more expensive budgets (the budget
levels are ordered in increasing size of the vertical axis). The two figures also reveal
that there are certain budget levels that suffer more than others from sensitivity to
second-order estimate inaccuracies. Looking at these budgets we observed that there
was a great deal of similarity between those budgets that are sensitive at the first order
and those that are sensitive at the second order.

This may provide tentative evidence that the additional effects that accrue from
higher-order effects are closely coupled to their first-order counterparts; budgets that
are sensitive at the first-order level tend to be sensitive at higher orders. Of course,
more examples need to be considered, and more analysis of higher order effects would
be required to provide sufficient empirical evidence to support any generalization of
this claim. It may also be possible to demonstrate a theoretical relationship between
first-order effects and additional impacts at higher orders. However, this remains a
problem for future work.

The effects of second-order interactions can also be seen for lower estimate inaccuracy
levels (smaller absolute values of PIAC). These are shown in Figures 12 and 13 which
show, respectively, additional second-order effects of under- and overestimation for four
other PIAC levels. Naturally, the lower the estimate inaccuracy, the lower the impact
of any and all estimate inaccuracies. However, we see the same overall pattern in these
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Fig. 10. Additional impact of second-order effects for 50% underestimated cost (PIAC = +0.50).

figures: certain budgets are more sensitive than others, and there is a general tendency
for more expensive budgets to suffer from greater additional impact.

8. HOW THE RESULTS CAN BE USED BY A SOFTWARE ENGINEER

We saw (Figure 4) that there is a general principle empirically observed in the Motorola
dataset that budgets with surplus close to zero are more sensitive to underestimation,
while budgets with ‘rich’ surplus are more sensitive to overestimates. However, we also
saw that there are sensitivities that can only be revealed by the analysis and do not
follow this general principle. For example, the budget values 100 and 600 have zero
surplus (tightest of all budgets) but are not particularly sensitive, while budget 5,330
is highly sensitive considering it has a relatively high budget surplus.

The decision maker can thus use the heat maps as a way to identify those budgets
that are sensitive to estimate inaccuracies. This can feed into the negotiations the
decision maker might have with other stake holders. Without the heat maps, the
decision maker would simply have to assume that tight budgets would be sensitive and
that high surplus provided a cushion of security. As we have seen, this would not be the
best policy. There may be more room to maneuver in a tight budget scenario and any
sense of security arising from a budget surplus might be a very false sense of security.
The decision maker would thus be well advised to use the analysis afforded by the heat
maps to back up their innate common sense and intuition.

Similarly, we observed that the degree of sensitivity of requirements varies (even
within budget levels that are, themselves, found to be very sensitive). For example, the
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Fig. 11. Additional impact of second-order effects for 50% overestimated cost (PIAC = −0.50).

budget 5,440 illustrates this point very clearly. Even for this highly sensitive budget
level, there is one completely insensitive requirement that remains entirely unaffected
by estimate inaccuracy.

These kinds of observations, taken directly from the heat maps, also provide infor-
mation that can be useful to the decision maker. The analysis of the heatmaps reveals
that it would be wise to seek to negotiate for a different budget if presented with a
management case for an overall budget of 5,440. Furthermore, it supports the decision
maker by providing him or her with a business case to underpin their negotiations.
The decision maker might appeal: “this particular budget is simply a too risky budget
and a dramatic reduction in risk can be achieved with a small budget modification.”

Of course, such negotiation may prove to be either impossible or unsuccessful. How-
ever, even in such an unfortunate situation, our sensitivity analysis approach retains
its usefulness, because the decision maker is both alerted to the need for particularly
careful cost estimation and also to those requirements that require particular attention.

We have seen that the decision maker can identify highly sensitive budget levels
and requirements in the Motorola dataset, providing some evidence that the use of
our heat maps can provide actionable results to the software engineering decision
maker. We cannot claim that all requirements problems will yield interesting actionable
results, but even where they do not, this means that the manager will have additional
confidence that ‘there is nothing out of the ordinary’ in the sensitivity of the budgets
and requirements.
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