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Abstract

Requirements engineering for multiple customers, each

of whom have competing and often conflicting priorities,

raises issues of negotiation, mediation and conflict reso-

lution. This paper uses a multi-objective optimisation ap-

proach to support investigation of the trade-offs in various

notions of fairness between multiple customers. Results are

presented to validate the approach using two real-world

data sets and also using data sets created specifically to

stress test the approach. Simple graphical techniques are

used to visualize the solution space.

1 Introduction

This paper addresses a requirements analysis setting in

which there are many customers, each with competing

(and possibly conflicting interests). This is an increasingly

prevalent because of the growing scale and complexity of

the organisations that requirements analysis must address.

Where there may be many customers, each with their own

view on the sets of requirements to be prioritized, the goal

of the requirements engineer may appear to resemble an in-

vidious attempt to please “all of the people all of the time”.

The authors have worked with Motorola on the problem

of multi customer requirements. The techniques for fair-

ness analysis proposed in this paper have been applied to

a real world set of requirements from Motorola and the re-

sults are reported as part of the validation of this work. The

Motorola data set concerns a set of 35 requirements for hand

held communication devices. In this case, the customers are

four mobile telephony service providers, each of which has

a different set of priorities with respect to the features that

they believe ought to be included in each handset. Motorola

also maintains cost data, in the form of the estimated cost of

implementation of each requirement. The paper shows how

it is possible to explore trade offs and tensions between the

customers in an attempt to satisfy multi definitions of fair-

ness.

To address this problem, the paper adopts a search-based

optimisation approach, which it uses to automate the explo-

ration of the possible trade offs and conflicts between var-

ious notions of fairness. The search explores the space of

possible allocations of requirements for the next release of

the system.

Requirements analysis problems, with their large space

of possible solution choices and complex and often com-

peting constraints have proved to be natural candidates for

optimisation based analysis. Previous work in this area has

shown that meta heuristic optimisation techniques can be

used to search for a balance between the costs and bene-

fits associated with sets of requirements in what has come

to be known as the Next Release Problem (NRP) [2, 16]

and Release Planning [4, 20, 21, 22, 26, 27, 28]. That is,

the problem is to find an answer to the question: ‘Which

requirements should appear in the next release of the sys-

tem?’.

Existing work on this problem has tended to treat the

NRP as a single objective problem formulation, in which

the various constraints and objectives that characterize the

requirements analysis problem are combined into a single
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objective fitness function. A variety of optimisation algo-

rithms have been applied to single objective formulations,

including integer linear programming, greedy algorithms,

branch and bound, simulated annealing and genetic algo-

rithms [2, 16, 32]. Single objective formulations have the

draw back that the maximisation of one concern might be

achieved at the expense of the potential maximisation of an-

other resulting in a bias guiding the search to a certain part

of the solution space.

More recently however, there has been work on multi-

objective formulations of the problem [29, 33]. In this work

on the Multi-Objective Next Release Problem (MONRP),

each of the objectives to be optimized is treated as a sep-

arate goal in its own right; the multiple objectives are not

combined into a single (weighted) objective function. This

allows the optimisation algorithm to explore the Pareto front

of non-dominated solutions. Each of these non-dominated

solutions denotes a possible assignment of requirements

that maximizes all objectives without compromising on the

maximisation of the others.

Hitherto, the only work on the MONRP has considered

two possible bi-objective formulations, one in which the

two objectives to be optimized are cost and value [33] and

the other in which the two objectives are implementation-

based and business-based [29]. However, no previous work

has considered the problem of fairness analysis in require-

ment optimisation.

The problem of fairness in requirements allocation has

two aspects:

1. What is a reasonable way to measure fairness?

2. To what extent can a solution be shown (to the stake

holders) to be a fair allocation of requirements

These two aspects are interrelated and complicated by

the fact that there is no single accepted notion of fairness.

For example, an allocation might be deemed to be fair were

it to satisfy the same number of requirements for each cus-

tomer. However, this might be over simplistic; perhaps the

solution should give each customer roughly equal value (as

perceived by the customer) or, alternatively, roughly equal

cost should be spent in implementing each customers’ re-

quirements.

This paper shows that using a multi-objective Pareto op-

timal search for optimal allocations of requirements, it is

possible to treat each candidate notion of fairness as a sep-

arate optimisation objective in its own right. The paper

shows that, using this multi objective approach, it is pos-

sible to explore the trade-offs between different notions of

fairness and to attempt to locate solutions that balance these

trade offs.

The result is feedback to the decision maker that serves

two purposes: it allows the decision maker to see where

there are potential problems in balancing concepts of fair-

ness among customers and it allows the decision maker to

demonstrate to the customer that the solution adopted is fair

according to multiple fairness criteria.

In this way, the ability to automatically search for opti-

mal regions of the ‘fairness space’ has applications in nego-

tiation, mediation and conflict resolution during the require-

ments analysis process. It provides an unbiased and thor-

ough exploration of trade offs and tensions within the multi-

dimensional and complex space of customers and their re-

quirements.

The primary contributions of the paper are as follows:

1. The paper gives several multi-objective formulations

of fairness in requirements allocation.

2. The paper introduces a search based approach to ex-

plore the space of multiply fair allocations.

3. The paper reports results on the application of the

search based optimisation approach to two real-world

requirements data sets and to a series of synthetic data

sets constructed to stress-test the approach.

The rest of the paper is organized as follows: In Sec-

tion 2 the research problem is defined formally. Section 3

introduces the search algorithms studied and how they are

tailored to the MONRP. Section 4 describes the experimen-

tal setup and environment. Section 5 presents the results

of the experiments and discusses the findings. Section 6

describes the context of related work in which the current

paper is located. Section 7 concludes.

2 Problem Formulation

This section gives definitions and characteristics of the

MONRP problem as an extension of the traditional NRP

model [2].

2.1 NRP Model

It is assumed that for an existing software system, there

is a set of customers,

C = {c1, . . . , cm}

whose requirements are to be considered in the development

of the next release of the software.

The set of possible software requirements is denoted by:

ℜ = {r1, . . . , rn}

In order to satisfy each requirement, some resources need to

be allocated. The resources needed to implement a particu-

lar requirement can be transformed into cost terms and con-

sidered to be the associated cost to fulfill the requirement.
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Typically, these cost values are estimated, which is the case

with the real world case studies presented below. The resul-

tant cost vector for the set of requirements ri(1 ≤ i ≤ n) is
denoted by:

Cost = {cost1, . . . , costn}

It is assumed that not all requirements are equally

important for a given customer. The level of satisfaction

for a given customer depends on the requirements that

are satisfied in the next release of the software, which

provide value to the customers’ organizations. Each

customer cj(1 ≤ j ≤ m) assigns a value to require-

ment ri(1 ≤ i ≤ n) denoted by: value(ri, cj) where

value(ri, cj) > 0 if customer j desires implementation of
the requirement i and 0 otherwise.
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Each customer cj has therefore, a subset of requirements

that they expect to be satisfied denoted by Rj

such that Rj ⊆ ℜ, ∀ r ∈ Rj value(r, cj) > 0

The decision vector −→x = {x1, . . . , xn} ∈ {0, 1} deter-
mines the requirements that are to be satisfied in the next

release. In this vector, xi is 1 if requirement i is selected
and 0 otherwise. This vector denotes the solution to the

problem.

2.2 Fairness in Requirements Assign-
ments

Fairness is a deceptively simple concept; its implemen-

tation is complicated because the definition of fairness may

have several equally valid, but possibly conflicting formu-

lations. In order to capture and optimize fairness, a new

aspect of the MONRP is explored: Fairness in Requirement

Assignments. The principal motivation of fairness analysis

is try to balance the requirement fulfillments between the

customers. It could provide a convincing reference from the

view of marketing and help the decision makers to maintain

a record of fairness between the customers. It also may play

a role in mediation, negotiation and dispute resolution.

Three factors are considered in this paper, namely, the

number, the value and the cost of the requirements fulfilled

for each customer. The aim is to calculate the absolute

amount and the percentage of each factor that is present in a

proposed MONRP solution. More formally, the three com-

binations studied in this paper are:

1. Fairness on absolute number of fulfilled requirements:

Maximize NA

Minimize σ(NA)

where NA is the mean value of the vector NA.

The vector NA = {NA1, · · · , NAm} represents the

absolute number of fulfilled requirements for each cus-

tomer, where NAj = |Rj |. Thus, the aim is to maxi-

mize the average absolute number of fulfilled require-

ments for all the customers whilst minimizing the stan-

dard deviation of the absolute number fulfilled require-

ments for each customer.

2. Fairness on absolute value of fulfilled requirements:

Maximize V A

Minimize σ(V A) where V Aj =

n
∑

i=1

value(ri, cj)·xi

The vector V A = {V A1, · · · , V Am} represents the

fulfilled value for each customer. In this vector, simi-

larly, V Aj(1 ≤ j ≤ m) is the jth customer’s fulfilled

value:

This objective function rewards solutions for which

each customer obtains the same value. It penalizes so-

lutions the more they depart from this equitable out-

come.

3. Fairness on the percentage of value and cost of fulfilled

requirements:

The vector Cost C = {Cost C1, · · · , Cost Cm} rep-
resents the costs of fulfilled requirement for each cus-

tomer. In this vector, Cost Cj(1 ≤ j ≤ m) is the jth

customer’s fulfilled cost:

Cost Cj =
n

∑

i=1

costi · xi if ri ∈ Rj

The vector V P = {V P1, · · · , V Pm} represents the

percentage of fulfilled requirements’ value for each

customer.

V Pj =
V Aj

∑

r∈Rj
value(r, cj)

× 100%

to minimize the standard deviation of spend on each of

the customers,

Minimize σ(Cost C)
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to minimize the standard deviation of the percentage

of fulfilled value for customers,

Minimize σ(V P )

to maximize the overall average fulfillment of each

customers’ objectives

Maximize V P

and finally to minimize the overall cost of the next re-

lease

Minimize

n
∑

i=1

costi · xi

3 Optimisation Algorithms

This section describes the search algorithms used in this

paper. In the solution of Multi-Objective Optimisation

Problems (MOOPs) there exist multiple and possibly con-

flicting objectives to be optimized simultaneously. There

are various approaches to solve MOOPs. Among the most

widely adopted techniques are: sequential optimisation, ǫ-
constraint method, weighting method, goal programming,

goal attainment, distance based method and direction based

method. For a comprehensive study of these approaches,

readers may refer to the survey by Szidarovsky et al. [31]

and Collette and Siarry [7].

3.1 Pareto-Optimal Front

TheMulti-Objective Optimisation Problem (MOOP) can

be defined as the problem of finding a vector of decision

variables−→x , which optimizes a vector ofM objective func-

tions fi(−→x ) where i = 1, 2, . . . ,M ; subject to inequality

constraints gj(−→x ) ≥ 0 and equality constraints hk(−→x ) = 0
where j = 1, 2, . . . , J and k = 1, 2, . . . ,K. The objective

functions are a mathematical description of performance

criteria that are usually in conflict with each other [24].

Without loss of generality, a MOOP can be defined as

follows:

Maximize {f1(−→x ), f2(−→x ), . . . , fM (−→x )}

subject to:

gj(−→x ) ≥ 0; j = 1, 2, . . . , J

and

hk(−→x ) = 0; k = 1, 2, . . . ,K.

where −→x is vector of decision variables; fi(−→x ) is the i-
th objective function; and g(−→x ) and h(−→x ) are constraint
vectors.

These objective functions constitute a multi-dimensional

space in addition to the usual decision space. This addi-

tional space is called the objective space, Z. For each solu-

tion −→x in the decision variable space, there exists a point in

the objective space:

−→
f (−→x ) = Z = (z1, z2, . . . , zM )T

In a Multi-Objective Optimisation Problem, we wish to

find a set of values for the decision variables that optimizes

a set of objective functions. A decision vector −→x is said to

dominate a decision vector −→y (also written as −→x ≻ −→y ) iff:

fi(−→x ) ≥ fi(−→y ) ∀ i ∈ {1, 2, . . . ,M};

and

∃ i ∈ {1, 2, . . . ,M} | fi(−→x ) > fi(−→y ).

All decision vectors that are not dominated by any other

decision vector are called non-dominated or Pareto-optimal

and constitute the Pareto-optimal Front. These are solutions

for which no objective can be improved without detracting

from at least one other objective.

3.2 Characteristics

Among meta-heuristics, Evolutionary Algorithms (EAs)

are particularly desirable to solve MOOPs, primarily be-

cause of their population-based nature. This enables them

to capture the dominance relations in the population as a

vehicle to guide the search towards Pareto-optimal front.

They deal simultaneously with a set of possible solutions

(the so-called population) which unlike traditional mathe-

matical programming techniques, can find good approxi-

mations of Pareto-optimal set in a single run. Additionally,

EAs are less susceptible to the shape or continuity of the

Pareto-optimal front [5], whereas these two issues pose a

barrier to classical mathematical programming techniques.

EAs usually contain several parameters that need to be

‘tuned’ for each particular application. For completeness,

and to facilitate replicability, we give details of algorithmic

tuning in Section 4.2. In addition, since the EAs are stochas-

tic optimisation techniques, different runs tend to produce

different results. Therefore, multiple runs of the same algo-

rithm on a given problem are needed to statistically describe

their performance on that problem. For a more detailed dis-

cussion of the application of EAs in multi-objective optimi-

sation, the reader is referred to Coello et al. [6] and Deb

[9].

To solve the MONRP, Multi-Objective EAs need to ful-

fill two primary roles:

1. Guiding the search towards the Pareto-optimal set to

accomplish optimal or near-optimized solutions.
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2. Maintaining a diverse population to achieve a well dis-

tributed non-dominated front, thereby fully exploring

the solution space.

3.3 NSGA-II

The Non-dominated Sorting Genetic Algorithm-II

(NSGA-II), introduced by Deb et al. [11] is an exten-

sion to an earlier Multi-Objective EA called NSGA de-

veloped by Srinivas and Deb [30]. The NSGA-II incor-

porates elitism to maintain the solutions of the best front

found. The rank of each individual is based on the level

of non-domination. The NSGA-II is a computationally ef-

ficient algorithm whose complexity is O(mN2), compared
to NSGA with the complexity O(mN3), where m is the

number of objectives and N is the population size.

The population is sorted using the non-domination rela-

tion into several fronts. Each solution is assigned a fitness

value according to its non-domination level. In this way, the

solutions in better fronts are given higher fitness values. The

NSGA-II uses a measure of crowding distance to provide an

estimation of the density of solutions belonging to the same

front. This parameter is used to promote diversity within the

population. Solutions with higher crowding distance are as-

signed a higher fitness compared to those with lower crowd-

ing distance, thereby avoiding the use of the fitness sharing

factor with its associated computational cost [17].

Deb et al. [11] assumed that every individual i in the

population has two attributes: non-domination rank (irank)
and crowding distance (idistance).

A partial order ≺n is defined as follows

i ≺ j if (irank < jrank)

or ((irank = jrank) and (idistance > jdistance))

That is, between two solutions with differing non-

domination ranks, the solution with the lower (better) rank

is preferred. Otherwise, if both solutions belong to the same

front, then the solution that is located in a less crowded re-

gion is preferred [11].

The algorithm can be described as follows. Initially, a

random parent population P0 with size N is created. Tour-

nament selection, crossover, and mutation operators are

used to create a child population Q0 of size N [11]. The

NSGA-II procedure executes the main loop described in Al-

gorithm 1.

The NSGA-II algorithm was applied to the Fairness

in Requirement Assignments Problem in order to identify

Pareto front in different scenarios.

Algorithm 1: NSGA-II (main loop) Deb (2001)

while not stopping rule do1

Let Rt = Pt ∪ Qt2

Let F = fast-non-dominated-sort (Rt)3

Let Pt+1 = φ and i = 14

while |Pt+1| + |Fi| ≤ N do5

Apply6

crowding-distance-assignment(Fi)
Let Pt+1 = Pt+1 ∪ Fi7

Let i = i + 18

end9

Sort(Fi,≺n)10

Let Pt+1 = Pt+1 ∪ Fi[1 : (N − |Pt+1|)]11

Let Qt+1 = make-new-pop(Pt+1)12

Let t = t + 113

end14

4 Experimental Set Up

4.1 Data Sets

This section describes the test data sets used to fulfill the

research tasks of fairness analysis in requirements assign-

ments. There are three data sets used in our experiments.

The first data set is generated randomly with 30 require-

ments and 5 customers according to the problem model.

The values and costs are assigned as follows: random

choices were made for value and cost; the range of costs

were from 1 through to 9 inclusive (zero cost is not per-

mitted). The range of values were from 0 to 5 inclusive

(zero value is permitted, indicating that the customer places

no value on, i.e. does not want, this requirement). This

simulates the situation where a customer ranks the choice

of requirements (for value) and the cost is estimated to fall

in a range, very low, low, medium, high, very high. The

authors’ experience indicates that customers prefer such a

coarse grained scale. While a finer level of granularity

may be more theoretically interesting for the research pur-

poses, in practice customers are uncomfortable with such

fine-grained value assignments.

The second data set is taken from Motorola [3] as shown

in Table 1. The Motorola data set has 4 customers and 35

requirements.

Table 2 shows the third data set that is taken from Greer

2004 [16]. The Greer data set has 5 customers and 20

requirements. Greer’s data does not contain information

about the cost of each requirement. For the purpose of feed-

ing this useful industrial data into our algorithm, the cost of

the requirements were generated randomly within the range

from 10 to 1100, following a Gaussian distribution.
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Table 1: Feature Data from Motorola
r1 r2 r3 r4 r5 r6 r7

100 50 300 80 70 100 1000

r8 r9 r10 r11 r12 r13 r14

40 200 20 1100 10 500 10

r15 r16 r17 r18 r19 r20 r21

10 10 20 200 1000 120 300

r22 r23 r24 r25 r26 r27 r28

50 10 30 110 230 40 180

r29 r30 r31 r32 r33 r34 r35

20 150 60 100 400 80 40

4.2 Algorithmic Tuning

The algorithm was run for a maximum of 10,000 func-

tion evaluations. The algorithm was executed 20 times for

each data set. The initial population was set to 200. A sim-

ple binary GA encoding was used, with each bit to code

for a decision variable (the inclusion or exclusion of a re-

quirement). The length of a chromosome is thus equal to

the number of requirements. Each experimental execution

of algorithms was terminated after 50 generation (i.e. after

10,000 evaluations). The genetic approach used the tour-

nament selection (with tournament size of 5), single-point

crossover and bitwise mutation for binary-coded GAs. The

crossover probability was set to Pc = 0.8 and mutation

probability to Pm = 1/n (where n is the string length for

binary-coded GAs). Readers may refer to Goldberg [15]

for detailed information about GAs and also to Deb [9]

and Coello et al. [6] for a comprehensive review of multi-

objective evolutionary algorithms.

Table 2: Feature Data Set taken from Greer 2004
r1 r2 r3 r4 r5 r6 r7 r8 r9 r10

c1 4 2 1 2 5 5 2 4 4 4
c2 4 4 2 2 4 5 1 4 4 5
c3 5 3 3 3 4 5 2 4 4 4
c4 4 5 2 3 3 4 2 4 2 3
c5 5 4 2 4 5 4 2 4 5 2

r11 r12 r13 r14 r15 r16 r17 r18 r19 r20

c1 2 3 4 2 4 4 4 1 3 2
c2 2 3 2 4 4 2 3 2 3 1
c3 2 4 1 5 4 1 2 3 3 2
c4 5 2 3 2 4 3 5 4 3 2
c5 4 5 3 4 4 1 1 2 4 1

5 Results and Analysis

In this section, we present different fairness models in

requirement assignments and the results of applying the

NSGA-II algorithm to different problem instances. Three

experiments were conducted and the results shown in Figure

1, 2 and 3 respectively. In order to demonstrate the evolu-

tionary process of the NSGA-II algorithm, the initial popu-

lations, the populations generated by the median generation

and the final non-dominated solutions were plotted in the

figures. Each point represents a subset of requirements for

the next release. The small ‘•’, ‘∗’ and solid ‘N’ denote

the increasingly better solutions found. Therefore, the algo-

rithm’s progress towards the final Pareto front produced is

visualized by increasingly darker and larger points.

The results of the first experiment are shown in Figure

1 where all the populations are plotted for the three data

sets. In this experiment, the two objectives are: a) minimize

the standard deviation of the absolute number of fulfilled

requirements for each customer and b) maximize the overall

average number of fulfilled requirements for all customers.

We observe that the search techniques guide the popula-

tion towards the Pareto front. The optimal fronts are shown

in the results for both random and the Motorola data set. On

these two fronts, the standard deviation of fulfilled require-

ments increases with overall average number. This implies

that the more requirements are fulfilled, the less fairness is

provided to the customers. This is partly because the cus-

tomers in these two data sets demand different numbers of

requirements. As the number of the selected requirements

increases, it becomes easier for the algorithm to adjust the

allocations of fulfilled requirements to different customers

to obtain a lower standard deviation (more fairness). The

most top-right solid ‘N’ on the fronts denotes the solutions

in which all requirements for the customers are fulfilled.

In Figure 1(a), the eight ‘∗’ along the X–axis with zero

standard deviation show that NSGA–II is able to obtain sub-

sets of requirements that fulfill each customer with the same

number of requirements. However, in Figure 1(b), we can-

not observe this sort of “perfectly-fair” solution. This is be-

cause of the difference between the sparsity pattern of the

Customer-Requirement matrix of these two data sets.

In the Motorola data set, every requirement is demanded

by only one customer exclusively, and the forth customer

requests only a single requirement. This pattern dramati-

cally increases the difficulty for NSGA–II to obtain the only

“perfectly-fair” solution that fulfills each customer with

only one requirement.

On the other hand, the result for the Greer data set

shows the standard deviation remains at zero throughout

the search. This is also because of the distribution of the

data, which, in this case is perfectly uniform. That is, in the

Greer data set, every customer requests every requirement,
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Figure 1: Results of Fairness on Absolute Number of
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Figure 2: Results of Fairness on Absolute Value of

Fulfilled Requirements
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(b) Result for Motorola Data Set
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(c) Result for Greer Data Set

Figure 3: Results of Fairness on Percentage of Fulfilled

Value and Cost

so all customers would have an equal number of fulfilled

requirements, no matter which requirements are selected in

the next release.

Figure 2 illustrates the results for the second experiment

in which the two objective functions are: a) minimize the

standard deviation of the absolute value of fulfilled require-

ments for each customer and b) maximize the overall av-

erage value of fulfilled requirements for all the customers.

On the fronts of these results, a similar trend is observed:

the degree of fairness decreases as the overall coverage in-

creases.

In the third experiment, information on the cost of the

requirements is taken into account. This allows us to obtain

fairness information within different budget constraints.

Four objectives are considered: a) minimizing the overall

cost of the next release, b) minimizing the standard devia-

tion of the cost spent on each customer, c) minimizing the

percentage of fulfilled value for each customer and d) max-

imizing the overall average fulfilled value for all customers.

Here, we consider the fairness on both cost and value

simultaneously. The results are plotted in Figure 3. It is

something of a challenge to visualize a four-dimensional so-

lution space in a two-dimensional figure. In this figure, each

bar represents an optimal solution on the Pareto front. The

location of each bar in the (x, y) plane shows the average
fulfilled value for all customers and the standard deviation

of fulfilled value for each customer respectively. The height

of each bar shows the overall cost for each optimal solution.

The standard deviation of the cost spent on each customer

is shown by the gray scale of each bar.

From the results for all the data sets, it can be seen that

as the overall fulfilled value increases along the X–axis,

the standard deviation of cost spend on the customers also

increases. This observation replicates the previous experi-

ments reported in this paper.

There is also an interesting observation in Figure 3(b).

There are no solutions in the ‘empty triangle’ area around

50% fulfillment on the average value. The reason for this

lies in the fact that the fourth customer in the Motorola data

set only requests a single requirement. Thus, the percentage

of fulfilled value for this customer has to be either 0% or

100%. Consider those solutions on the edge of this triangle,

when the overall percentage is growing between 0% and

50%, the fulfilled value for this customer stays at 0%. This

is because the other customer’s fulfillment is below 50%, if

the fourth customer has 100% fulfillment then the standard

deviation will increase and the solution will leave the edge.

Thus, on the edge of the triangle leading up to 50% overall

fulfillment, the standard deviation must increase if one of

the customer’s fulfillment remains at zero while the other

customer’s fulfillment increases.

The experiments show that as more requirements are ful-

filled, less fairness is provided to the customers. This is
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partly due to the high variation in the customers’ number

of requirements in the examined data sets. However, fortu-

nately as the number of the selected requirements increases,

the algorithm has more scope in which to search for opti-

mally fair solutions. It was also observed that the quality of

final solutions in terms of fairness is partly dependent upon

the sparsity pattern of the Customer-Requirement matrices.

This is also the case for the search algorithm, i.e. sparser

customer-requirement matrixes tend to make problem more

difficult for the search algorithm.

6 Related Work

In the area of requirements engineering, several related

studies have been proposed for requirements analysis and

optimisation. Karlsson [20, 21, 27] provided the method-

ologies for assigning priorities to requirements and devel-

oping strategies for selecting an optimal set of requirements

for implementation. The Focal Point tool (marketed by

Telelogic) is based on this work.

Bagnall et al. (2001) [2] suggested the term Next Re-

lease Problem for requirements planning and described the

various metaheuristic algorithms to find a high quality, but

possibly suboptimal, solution to balance customer requests.

Van den Akker [32] study a variation of the problem using

integer linear programming to find exact solutions within

budgetary constraints.

Zhang et al. [33] considered value and cost as two

separate criteria in their multi-objective next release prob-

lem (MONRP) formulation. They consider an integrated

value function, comprising of the values associated with

each customer using search-based techniques. Greer and

Ruhe [16] address software release planning by minimizing

total penalty and maximising total benefit in the form of an

integrated objective function with user defined weights for

each objective.

Problems associated with multiple customers with com-

pleting and conflicting view points has been known for

some time [23]. Hoh In at el. [18, 19] proposed the WinWin

model to help the stakeholders’ negotiation process based

on Multi-Criteria preference analysis. Another approach

to resolve stakeholder conflicts is the ViewPoint approach

[12, 13], which separates the different opinions among the

stakeholders and can detect conflicts automatically. In the

stakeholder requirements analysis problem, Robinson at el.

[1, 25] worked on a requirements negotiation model which

provided automated support to generate requirements reso-

lutions.

However, the present paper is the first to introduce tech-

niques for analysis of the trade-offs between different cus-

tomers’ notions of fairness in requirement allocation, where

there are multiple customers with potentially conflicting re-

quirement priorities and also possibly different views of

what would constitute fair and equitable solution.

Evolutionary multicriteria optimisation has traditionally

concentrated on problems comprising 2 or 3 objectives. Our

formulation comprises a relatively large number of objec-

tives. Such problems pose new challenges for algorithm de-

sign, visualization and implementation. In multi-objective

evolutionary search the populations are likely to be largely

composed of non-dominated solutions.

Fleming et al. [14] use progressive articulation of design

preferences to assist in reducing the region of interest for

the search and, thereby, simplifying the problem.

Corne and Knowles [8] compare a number of ranking

methods to address the shortcoming of existing evolutionary

algorithms for many-objective optimisation.

Deb and Kumar [10] suggest an interactive method to

incorporate user preferences in guiding the multi-objective

search. The idea is to reduce the search space by focusing

on the more favourable regions of the Pareto front. This ap-

proach has potential application in the multi-objective next

release problem provided that the user is prepared to iden-

tify their preferences during the search.

Though other authors have considered conflicts and ne-

gotiations, the present paper is the first to address the issue

of “fairness” in requirements analysis.

7 Conclusions

The paper introduces the concept of fairness in require-

ments analysis and optimisation using a new formulation

of Multi-Objective Next Release Problem. Three fairness

models were introduced to balance the requirements fulfill-

ments between the customers.

The work reported here is the first to address the issue of

fairness balance among different definitions of fairness. The

formulations adopted cover simplified scenarios. However,

even with the relatively simple formulations adopted in this

paper, it has been possible to use search based optimization

technique to reveal tensions between fairness definitions.

The experiments upon which this paper reports demon-

strate that search based techniques can be applied to real

world data sets and illustrate the way in which they reveal

hidden tensions implicit in these data sets. However, more

work is required to extend and evaluate the techniques.

Future work will focus on adapting the search based for-

mulations to cater for more ‘messy’ real world scenarios

in which requirements are partially unclear and subject to

change and for which the domain specific parameters are

both constrained and subject to estimation error. These aug-

mented scenarios would pose a significant challenge to any

approach. However, there are grounds for optimism. We

are also concerned to find ways to package and deliver our

approach in such a way that they can be used by working

requirements engineers in the context of existing tool sets.

123



References

[1] Automated support for requirements negotiation, Mar. 17

1994.

[2] A. Bagnall, V. Rayward-Smith, and I. Whittley. The Next

Release Problem. IEE Proceedings - Software, 43(14):883–

890, Dec 2001.

[3] P. Baker, M. Harman, K. Steinhöfel, and A. Skaliotis. Search
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